
ArOAIII 107 AIR FORCE INST OF TECH WRIS44T-PATTERSON AFO ON SCHOO-EzTC F/f h2/3'
DESIGN OF AN ORBITAL ELEMENT ESTIMATOR USING RELATIVE MOTION OA--ETC(U)

UONL EC $I .1 F ANTHONY

WiCLASSIFIED AFIT/GA/AA/8D1 ML

IIEEEIIIIIIIEE

IEEEEEEEEEEEI
EEIIIIEEEEEIIE
IIIEEIIEEEIIIE
iEEEIhEIhhIhI



- d

OF .

JN

* UNITED STATES AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base,Ohio

This document has been approved
for pi'blic release and sale; its
di t ibutioxi is unlimited.

82 0202



AFIT/GA/AA/81D-l

DESIGN OF AN ORBITAL ELEM4ENT
ESTIMATOR USING RELATIVE

MOTION DATA

THESIS

APIT/GA/AA/81D-1 John F. Anthony
1 Lt USAF

Approved for public release, distribution unlimited



AFIT/GA/AA/81D-l

DESIGN OF AN ORBITAL ELEMENT
ESTIMATOR USING RELATIVE MOTION DATA

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University

in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by

John F. Anthony
lLt USAF

Graduate Astronautical Engineering
December 1981

Approved for public release, distribution unlimited



Acknowledgements

I would like to thank Dr. William Wiesel for the

knowledge and encouragement he gave me while completing this

thesis and attending his classes. Dr. Wiesel's immense

knowledge of astrodynamics and orbit determination, both in

the theoretical and operational sense, greatly helped me and

motivated me in pursuing this project.

The role of a typist in completing a thesis is far more

important than most students acknowledge. The skill and

perserverence exhibited by my typist, Ms. Niki Maxwell,

proved to be invaluable in completing this paper.

Finally, I thank my fellow astronautical engineering

classmates for their help and encouragement as fellow stu-

dents and more importantly as my friends.

John F. Anthony

ii



Contents

Page

Acknowledgements ......... . .. .. .. . ... .. . .. . .. .. .. .. ... ii

List of Figures .............. ........ .. . ... . .... iv

List of Tables....... .. * * * * * * otto* * * ** ** * * ** ** v

Abstract.......... .................... vi

Ii. Least Squares Estimation Theory................. 4

Probability Theory... .. o.- . ..... ...... 4
Dynamics ....................................... 6
Linear Least Squares Estimation......... 7
Nonlinear Least Squares Estimation ........... 9

III. Development and Design............ .......... 13

Classical and Delaunay orbital Elements . 13
Equations of Motion and Relative Motion . 16
Range and Range Rate Measurements ............. 21
Truth Model...................... o......... . 24
Relative Orbital Element Estimator........ 25

IV. Testing and Results ........o...... .....0..... .. 30

V. Conclusions and Recommendations ................ 42

Bibliography,.....o..... ... ...... 0............... 47

Appendix A: Vector/Matrix Components of the Least
Squares Estimation Equation............... 48

Appendix B: Test Case Dat a....o- e..a.......a...... o 57

Appendix C: Truth Model Flowchart and Computer
Program ... o o ... ................ 61

Appendix D: Relative Orbital Element Estimator
Flowchart and Computer Program ............. 66

Appendix E: Subroutines Used in Computer Programs... 86

Vita .... .... ..... .. 9



List of Figures

Figure Page

1 Gaussian Error Function ....................... 4

2 Orientation Orbital Elements .................. 13

3 Perifocal Coordinate System ................... 14

4 Relative Position Computation ................. 17

5 Relative Velocity Computation ................. 17

6 PQW and IJK Coordinate Systems ................ 18

7 Range Computation.. ......... .............. .... 22

8 Range Rate Computation ....... ............ 23

9 Case I, Satellites at Epoch................... 34

10 Case II, III, Satellites at Epoch ............ 34
t

iv



List of Tables

Table Page

I Case IOrbital Elements....................... 33

2 Case I Variance Comparison .................... 37

3 Case IIVariance Comparison.................... 37

4 Case IIIVariance Comparison................... 38

5 Case I Measurement Standard Deviation
Comparison ............. ... . .............. * .... 38

6 Case II Measurement Standard Deviation
Comparison. .. . ....... . . ..... * ................ ** * 39

7 Case III Measurement Standard Deviation
Comparison ................................ 39



AFIT/GA/AA/81D-1

Abstract

A relative orbital element estimator is designed using

least squares estimation. Range and range rate measurements

are taken and a vector of Delaunay elements, relative to an

interceptor satellite, is estimated using the nonlinear

least squares equation. The estimator incorporates a state

vector coordinate transformation from relative position and

velocity to relative orbital elements. Two modes of the

estimator program are designed, batch and sequential, where

the sequential mode uses Bayes estimation. Three test cases

are analyzed and indicate satisfactory performance. Problem

areas include estimator dependence upon a highly accurate

initial estimate of the element vector to start the estima-

tion process. The orbits are restricted to noncircular for

both satellites and the orbits must be non coplanar. Range

and range rate data for the estimator are provided using a

truth model.
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I,

DESIGN OF AN ORBITAL ELEMENT
ESTIMATOR USING RELATIVE MOTION DATA

I. Introduction

Tracking an orbiting satellite from ground based sta-

tions is the primary method for determining a satellite's

set of orbital elements. In a rendezvous and intercept

situation the target orbital elements relative to the pri-

mary or intercept satellite are needed to compute the

maneuvers necessary to accomplish the intercept. This data

can be provided by ground-based tracking stations or can be

determined using an estimation process on board the inter-

ceptor that uses relative motion data of the target from the

*interceptor.

A4 Most relative motion studies involve linearization of

the equations of motion about a circular orbit. Developing

an orbital element estimator using relative motion data is

based upon the dynamics or equations of motion relating the

relative motion of two nearby satellites. The most commonly

used equations for relative motion are the Hill's equations

(Ref 5:111). These equations are used to develop relative

motion relationships between two spacecraft that are in
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neighboring near-circular orbits. This restriction to near

circular orbits limits the use of Hill's equations for use

in an orbital element estimation process using relative

motion. Eades and Drewry (Ref 4) develop a set of relative

motion equations but restrict the orbits to the same orbital

period and restrict one satellite to a circular orbit. The

estimation process used by NASA in the Apollo Guidance

Computer Rendezvous Filter is designed to estimate both the

position and velocity state vector of the primary and target

satellite (Refs 9, 3). Measurements used are range, range

rate, azimuth, and elevation angles. There is no restric-

tion to the type of orbits, but the Rendezvous filter does

not estimate a set of orbital elements. A satellite-to-

satellite orbit determination system designed by NASA is the

Tracking and Data Relay Satellite System (TDRSS) (Ref 6).

This system uses least squares estimation processing radar

measurements from a geostationary, circular orbit, station.

This system is linked to a ground station that processes the

tracking data and therefore is not autonomous. Also, the

tracking satellite is restricted to a circular orbit.

Past studies of relative motion have dealt with the

near circular orbit case. No method of orbital element

determination from an in-orbit platform using relative

motion for noncircular orbit scenarios has been developed.

Development of a system to determine orbital elements from a

spacecraft has its advantages in that it means longer visa-

2



bility and observation time from space than from the ground

tracking stations. Determining the orbital elements is

necessary to plan and accomplish a rendezvous and intercept

of two spacecraft independent of ground tracking facilities.

Ground tracking data could be supplemented with the data

determined by the orbiting tracking systems for selected

targets.

The orbital element estimator designed in this study

uses least squares estimation theory to estimate a set of

relative orbital elements of a target from a primary

spacecraft. Incorporated in the design is a state vector

coordinate transformation from relative motion data to rela-

tive orbital elements. Using this transformation in the

least squares estimation process is a unique concept in the

design of this orbital element estimator.

3



II. Least Squares Estimation Theory

Least squares estimation is based upon probability

theory, specifically the principle of maximum likelihood,

where the best estimate of a state is the value at which the

probability of it being the true state is maximized.

Probability Theory

Equation (1) introduces the Gaussian probability den-

sity function.

-1/2 ((()-ie2 2 o2

P(e) ((2n) la) exp (-(e) /2 ) ()

The probability density function gives the probability

that an error, denoted e, will lie between e and 6e as

P(e)6e. Integrated over the interval of all possible error

this function is normalized to unity, as shown in

Equation (2).

f P(e)de (2)-I/2 - f exp (-e 2/2o2)de = 1 (2)

A gaussian error function is shown graphically in

Figure 1 and supplemented by Equation (3).

P(X) = (270)1/2 -1 exp(-(X-X )2/2a2) (3)

P0

xO-30 XO-20 XO-0 X0 XO+o XO+20 XO+3a

Fig 1. Gaussian Error Function.
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The value X0 is the true measurement value. The

standard deviation, o, is a function of the accuracy of the

measurement device. The Gaussian probability of an estimate

being within lo of the true value is .68 or 68% probability.

The concept that links probability theory and least

squares estimation is the principle of maximum likelihood.

Simply stated, the best estimate of the true value is the

estimated value which maximizes the probability of obtaining

the true measurement.

The best estimate of X is X. Substituting this for the

true state yields the following probability function for N

independent measurements, Equation (4), where X is the

measurement vector and-X is the estimated measurement

vector.

N N
P(Xi) = (2-f)-N/2 l oi-i exp(-= (Xi-Xi)/2a2 (4)

1 =0 1

To maximize the probability the absolute value of the

argument of the exponential is minimized using Equation (5).

N
d -l(Xi-Xi)2 N (Xi-Xi)

= 1 - 0 (5)
S2 2dX 2ai a~ °i

Minimizing (2_X) is necessary to maximize the probabi-

lity, hence the name least squares, where the sum of the

squares of the errors is minimized. (X-X) is called the

residual, it is the difference between the observed measure-
iN

ment, X, and the estimate of X, again denoted X.
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II

Dynamics

Estimation of the state of a dynamical system, such as

a set of satellite orbital elements, involves linearized

dynamics. The estimate of the state, X, is propagated in

time by the vector differential shown in Equation (6).

R = g(R, t) (6)

For trajectories of the state near the true trajectory,

x=xo+6X, the dynamics of the variations in the trajectory is

given in Equation (7),

X = Xo + 6X = g(Xo + 6R,t) (7)

Using a Taylor series expansion yields Equation (8).

X0 + 6X = g(X0o,t) + Vg(Xo,t)69 + 0(2) (8)

Equation (8) reduces to Equation (9) and introduces the

A matrix which propagates the dynamics of the variations.

6X = A(t)6X,

where

A. (t) = Vg(X 't) = 1-- Xo (9)

The state transition matrix, , propagates the

variations in the state as shown in Equation (10).

6X(t) = (t,tO ) 6X(t O ) (10)

6
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The dynamics of the state transition matrix are deter-

mined by Equation (11).

;(t,t o ) = A(t)O(t,t o )  (i

The covariance, denoted P(t), is a matrix containing the

average squared errors of the states related to themselves

and other elements. The state transition matrix propagates

the covariance by Equation (12).

P(t) = 0(t,t o ) P (to ) PT (t,to) (12)

Linear estimation can be formulated using the

linearized dynamics and subsequently related to nonlinear

estimation, which is commonly used in astrodynamical

problems.

Linear Least Squares Estimation

For a linear dynamical system the state transition

matrix propagates the state from an epoch time, to, to a

future time, t. The state at epoch is to be estimated from

data measurements, Ti, taken over some time interval. The

state vector is related to the measurement vector by

Equation (13) where Hi is the observation relation matrix

and ei represents the error in the measurements.

Zi Hi X(t) + ei (13)

7



Associated with the measurement vector Z is the Q

matrix which contains the squares of the a values of the

measurement device.

Equation (13) is rearranged to find an expression for

the error between measurement and the estimated measurement,

the result is Equation (14).

ei = zi - HiX(to) (14)

The state vector X(t) is related to the state at epoch

time using the state transition matrix propagation X(to ) to

X(t). Incorporating this into Equation (14) yields

Equation (15).

ei = zi - viX(to) (15)

where

Vi = H(ti,to)

Substituting Qi as a2 and the error equation (Equation (15),

into the Gaussian error function, Equation (4), yields an

expression for the probability of error in the measurement

set (Equation 16).

P(E) = (2w) -N/2 Qj-1/2e(-1 /2J) (16)

where J = eTQ-le.

8



To maximize the probability, J is minimized in the same

way the argument of the exponential was minimized in

Equation (5).

81 a -T -1 ---
a_ (Z - X ) Q (Y 0 ) 0 (17)

where X is the estimate of the state vector

Differentiating Equation (17) yields Equation (18).

T - - T --Q -9y X Q 0 (18)

Rearranging Equation (18) leads to an expression which

is the fundamental linear least squares equation.

T~ -19- 1 T
R(to) T- TQ-l (19)

T -1 -1where is the covariance matrix.

Nonlinear Least Squares Estimation

Nonlinear estimation is based upon linear estimation

theory using the linearized dynamics and modified components

of linear estimation.

The measurements are now a nonlinear combination of the

states and are given by the observation relation,

Y (ti )  = G X t ) ( ))(20)

This relation is linearized to give Equation (21).

9
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e-- 6X(t ), - _H (21)
ax. i ax. i

Hi is evaluated on the estimated or reference

trajectory.

The residuals are given by Equation (22) using the

nonlinear observation relation.

ri = Zi - G(Xrefti) (22)

Following the development of the linear least squares

equation, using the nonlinear terms developed, gives the

fundamental nonlinear least squares equation, Equation (23).

61(t0 ) (rQ-KI.W)IWTQ- 1?r (23)

and the estimated state vector is given as Equation (24).

X(to) = Xref (to) + 6X(to) (24)

Nonlinear least squares Equations (23) and (24) are used

to update the reference state vector iteratively until it

converges upon a solution. The convergence criteria is

based upon the true solution being the result.

Theoretically SX(t o) will converge to zero, in practice it

should be allowed to converge to well within the associated

square root of the covariance for that element, i . The

residuals, independently, should be of order 'Qi-i as they

converge.

The algorithm below shows the step by step iterative

process used to converge upon a solution.

10
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NONLINEAR LEAST SQUARES ALGORITHM

1. From each measurement calculate:

a. ri = Zi - G(Xref(ti) ' ti)

b. Hi

c. 0 (tipt O )

2. Assemble vector/matrices necessary for nonlinear

least squares equation.

r= r2  2 H2 2  Q Q2

-ri- _Hi 0i- Qi.

3. Compute update using least squares equation

T 1 1T1
6X(to) (W Q-Ih- Q-I'

4. Update reference solution.

X(to) = X(to) + 6X(t o )

5. Convergence Check! If convergence criteria is

met X(t o ) is the solution. If not met, return to

Step 1 where, using the observation relation, a

new set of residuals are computed.

Nonlinear least squares estimation is implemented with

a batch of measurements using the given algorithm.

Combining sequential measurements with previous estimates of

11
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a state is also accomplished using the fundamental equation.

A sequential nonlinear least squares process is imple-

mented using the previous estimate of the state, denoted X,

as data with an associated covariance, denoted P-(to).

Since the estimate is at epoch time the observation relation

matrix for this data is the identity matrix. The components

of the fundamental equation for the sequential least squares

are given in Equation (25).

= [ :seq = - (25 )

r = i - EST

Substituting these into the fundamental equation for

nonlinear estimation gives Equation (26).

6X (Pat. + 94 TQ-1%) 1 - Qr
6X P +T(to)R X) +T Q-r (26)

where X is the previous state estimate.

Sequential least squares is more commonly called Bayes

estimation. Bayes estimation minimizes the squares of the

sequential residuals and the discrepancy between the pre-

vious estimate and the estimate of the state vector deter-

mined by the Bayes estimation process. The Bayes estimation

equation is used iteratively which is similar to the given

least squares algorithm.

12



III. Design and Development

Classical and Delaunay Orbital Elements

The orientation and size of a satellite orbit is

described by a set of orbital elements. The classical orbi-

tal elements are the most commonly used. This estimator

uses the Delaunay orbital elements which can be directly

related to the classical elements. The Delaunay elements

are the standard set of canonical elements for the two body

problem. All element sets are mathematically equivalent,

and therefore one set can be related to another set.

To best describe the Delaunay elements the meaning of

the classical elements is necessary. Figure 2 gives the

classical orientation elements.

// Orbit
Plane

orbitEquatorial
Plane

" /erig

To Vernal Line of Nodes
Equinox

Fig 2. Orientation Orbital Elements.
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The longitude of ascending node is a, i is the inclination

to the equator plane, and w is the argument of perigee. The

vernal equinox is the direction in space used as a reference

for the inertial coordinate system used in this design. The

dimensional elements specify the size and shape of the orbit

and relate position in the orbit with time. The semi-major

axis is denoted a, e is the eccentricity, it defines the

shape of the orbit and M is the mean anomaly which deter-

mines the satellite's position in the orbit. Mean anomaly

is an angular element. Commonly used with the classical

elements is a coordinate system that has unit vector P

directed to perigee, the closest point in the orbit to the

attracting body. Q is perpendicular to P and W completes

the orthogonal right handed set. This frame is called the

perifocal coordinate system, or PQW, as shown in Figure 3.

Q

Perigee

Apogee

Perigee

.,Q

Apogee Orbit

Plane

Fig 3. Perifocal Coordinate System.

14
I



The Delaunay elements can be related to the classical

elements using Equations (1) through (6) (Ref 11:24).

L = p, where P is the gravitational constant (i)

1 = n(t-TpERIGEE) = M, where n (2)

G = iva(l-e 2 ) = L /l-e 2  (3)

g =W (4)

H = !Ia(l-e2 ) cos i = G cos i (5)

h =(6)

Delaunay elements g and h are identical to the classi-

cal orientation elements w and Q. Element 1 is the mean

anomaly and is also defined by Equation (7) which introdu-

ces E, the eccentric anomaly, an angular measurement from

the center of the ellipse.

1 = E - e sin E (7)

Element L is related to the semi-major axis and used to

definethe total energy of the orbit. G is related to the

eccentricity and is the total angular momentum of the orbit.

H is the inertial vertical component of the angular

momentum.

15



The classical orbital elements in terms of the Delaunay

elements are given in Equations (8) through (13).

a = L2/u (8)

e = /1 - G2/ (9)

i = cos-l(H/G), sin-1 (l-H2 /G2 ) (10)

W g (11)

a =h (12)

M =1 (13)

Equations of Motion and Relative Motion

Relative motion can be described as the apparent motion

of another object as seen from the primary object. The

relative motion of two nearby satellites is found by deter-

mining the position and velocity of each vehicle and dif-

ferencing the vectors accordingly to find the relative posi-

tion and velocity. The position and velocity must be in a

common coordinate system. The position and velocity of a

satellite is a function of the orbital elements and time.

Figures 4 and 5 show how the relative position and velocity

vectors are found. (Figures 4 and 5 follow on the next

page.)

Position and velocity computations for each satellite

are initially computed in the PQW coordinate system. To

find the inertial relative motion the vectors are trans-

formed into an inertial frame, defined IJK, where I is

directed to the vernal equinox. Figure 6 shows the rela-

tionship between PQW and IJK coordinate frames.

16
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K

Orbit

P Plane

Fig 6. PQW and IJK Coordinate Systems (Ref 1:80).

Position in the PQW system (Ref. 1:80) is given by

Equations (1) and (2).

rp = (L2/p)(cos(E) - /I-G2/L2) (1)

rQ = (LG/V) sin(E) (2)

where E is the eccentric anomaly and the initial E is

assumed to be zero.

Velocity, in the PQW system, is found by taking the

time derivative of the position vector, shown in

Equation (3).

- d - drPQW dE dl
VQW =- rPQW E -- I T (3)

11

I_ - -... .



The mean motion is defined as dl/dt and is given in

Equation (4).

dl 2 /L3 (4)

dE/di is the change in the eccentric anomaly with

respect to 1, the mean anomaly. Differentiating implicitly

yields Equation (5).

dl = dE - e cos(E)dE (5)

Substituting e in terms of the Delaunay elements in

Equation (6),

dl = dE - !l-G2/L2 cos E dE (6)

and separating leads to Eq (7)

dE 1
(7)

1 - /I-G2/L cos E

dr/dE is found by differentiating the vector components

of position with respect to the eccentric anomaly E.

Equations (8) and (9) are the results.

drp/dE = (-L2 /p) sin(E) (8)

drQ/dE = (LG/4) cos(E) (9)

19
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Substituting expressions from Equations (4), (7), (8),

and (9) into (3) gives expressions for the velocity vector

in the PQW frame, Equations (10) and (11).

VP = -P sin(E)/(L(l - /I-G2/L2 cos(E))) (10)

VQ = PG cos(E)/(L2 (l - !I-G 2/L 2 cos(E))) (11)

The position and velocity state vector is given as a

six-component vector Equation (12).

rp

rQ

XPQW =  rW , where rW and VW = 0

Vp

VQ

_Vw.

Rotation from PQW to IJK frame is accomplished using

Equation (13), where R, the transformation matrix from PQW

to IJK is given in Appendix A.

XIJK = [R]XpQW (13)

The position and velocity of each satellite is computed

at given times and differentiated accordingly in the iner-

tial frame to yield the relative position and velocity

20



vector of the target from the interceptor (Equation 14).

rTI - ri, I - "r I "

rT,J - rij Arj

XRELATIVE rT,K - rI,K ArK (14)

VT,I - VI, I  AVI

VT,J - VI,J AVj

VT,K - VIK AVK

T = Target

I = Interceptor

Range and Range Rate Measurements

Range and range rate measurements are used as obser-

vational data for the estimator. These measurements were

selected since they relate directly to relative position and

velocity and are typically measured by a radar unit. The

radar unit used in the design has a 100 meter standard

deviation, a, in range accuracy and a 0.3 meter per second

a in range rate accuracy. A radar's accuracy is dependent

upon several factors. Range to the target and power pro-

vided to the radar are basically those factors that affect

the accuracy and capability. Cross section of the target

and shape are also important factors to consider. This

estimator uses a theoretical radar that is not range

restricted and has the constant o values given previously.

It is assumed that the interceptor radar is able to track

any target, regardless of size, shape, or range. Special

cases tested used a range restriction of less than 200 Km,

21
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which is a reasonable range limit for a radar. Generally,

the range was not restricted for testing the performance and

accuracy of the estimator.

Range is measured along a line of sight vector from the

interceptor to the target. Range is the magnitude of this

line of sight vector, as shown in Figure 7.

Target

Range =rT-rI]

Interceptor

T 
,

Fig e 7. Rang t Copto n

n erm of the retepsto thrag is ieni

FigEquationCmpu(t1)n

Range = (Ar 2 + Arj2  T, rK2) (I)

22
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Range rate is the rate of change of the range scalar.

The dot product of the rela.tive velocity vector and the

relative position vector divided by range gives range rate,

as shown in Figure 8.

Interceptor r T- r I 
Target

r Iv cose

Range Rate = (- r)/IFI = JV cose

Fig 8. Range Rate Computation.

Equation (2) gives the range rate in terms of the rela-

tive position and velocity.

Range rate = (AVIArj + AVjArj + AVKArK)/Range (2)

The estimator program reads the range in distance units

(DU), where 1 DU = 6378.145 Km, range rate in distance units

per time unit (DU/TU), where 1 DU/TU = 7.905376 Km/sec, and

time in TU, where 1 TU = 806.8136 seconds. The time used is

23



the time past epoch, the epoch time being when the intercep-

tor was a perigee. (Ref. 1:429)

Truth Model

The truth model generates the true range and range rate

data at given times for various orbital scenarios. The

truth model data is generated using a computer program that

propagates the position and velocity of two satellites, an

interceptor and target, in two orbits. The position and

velocity are propagated using the equations previously

developed, Equations (1), (2), (10), and (11) of the

Equations of Motion section of this chapter. Time is the

common variable that is synchronized for both satellites.

Each satellite is started from an initial position and moved

using 1 minute time increments. At each time the associated

eccentric anomaly is computed for the equation of motion.

Orbit size and orientation are computed using a given set of

orbital elements for each satellite. The inertial position

*- and velocity vector at each measurement time are computed

and differenced accordingly to give the relative position

and velocity. Range and range rate are computed using the

relative position and velocity and are given by

Equations (1) and (2), which are repeated from-the Range and

Range Rate section.

Range = (Ar, 2 + Arj 2 + ArK2)/ (1)

Range Rate = (AVIAr, + AVjArj + AVKArK)/Range (2)

24
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The truth model computer program gives range, range

rate, and time at 10 minute intervals for an orbit scenario,

but minor modifications can adjust the time interval. The

computer program and associated flow chart for the truth

model are presented in Appendix C.

Relative Orbital Element Estimator

The estimator designed in this study uses least squares

estimation theory to estimate a set of relative orbital ele-

ments. The relative orbital element state, Equation 1, is

the difference between the known interceptor elements and

the estimated target elements at an epoch time, here chosen

to be the time when the interceptor is at perigee prior to

taking range and range rate measurements. Initially an

estimate of the relative element vector is needed to start

the estimation process. In this study the initial estimate

is found by perturbing the true relative element vector by a

certain percentage selected by the user.

6L
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The estimator is designed using the developed theory,

however, a modification unique to the design is incor-

porated. The modification used in this estimator that is

different from typical least squares estimation is the state

vector coordinate transformation from relative position and

velocity to a relative orbital element state vector.

Variations in the relative position and velocity are related

to the variations in the Delaunay orbital elements. This

modification is incorporated via the state transition

matrix.

From the Least Squares Theory section, Equation (2)

depicts the classical way the 4 matrix is used to propagate

the variations of the state vector in time.

6X(t) = N(t,to)6X(t o ) (2)

The 0 used in this design is not classical. Here

t propagates the variations of the position and velocity

relative to the interceptor orbit. These variations are

propagated from an epoch time to a particular time, in this

case a measurement time. As well as propagating motion,

t also relates the variations in position and velocity to

variations in the Delaunay elements. Thus, 0, called the

state transition/state vector coordinate transformation

matrix, relates relative position and velocity to the rela-

tive orbital elements. 0 is formed by developing rela-

tionships between the satellite position and velocity in the

26
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PQW coordinate frame and the associated Delaunay orbital

elements and then transforming the result into the IJK coor-

dinate frame. The position and velocity vector (Equation 3)

and the orbital elements vector (Equation 4) are related to

each other in the PQW reference frame by the relation given

in Equation (5)

Xr,V = [rp, rQ, rw, Vp, VQ, VW] (3)

XELEMENTS = [L, I, G, g, H, h] (4)

d(Xrv) d(Xr,v) dE r,v (5)

d(XE) dE d(X 3X
ELM PQW ELM ELM

Equation (5) results in a 6x6 matrix relating

variations of the six components of position and velocity to

variations of the six orbital elements in the PQW frame.

The result of Equation (5) is transformed into the IJK coor-

dinate frame using Equation (6).

d(X ,V)IJK R d(Xr,V)
X + [R] (6)

d(XELM) 3 (XELM) r,V d(XELEM)

R is a coordinate rotation matrix from the PQW to IJK

frame. The result of Equation (6) is a 6x6 matrix relating

the variations of relative position and velocity to

variations in the Delaunay elements in the IJK frame. The

detailed vector and matrix components for the development of

0 as well as the other components necessary for implemen-

27
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tation of the nonlinear least squares equation are pre-

sented in Appendix A.

The validity and accuracy of 0 is checked using numeri-

cal derivatives and comparing them with the appropriate

column vector of 0 at the given time. A position and velo-

city vector is determined using a given set of orbital ele-

ments. One element is perturbed a small amount, 6, and

another position and velocity vector is found. The vector

difference divided by the change of the element should agree

with the associated column vector of 0. Equation (7)

depicts the check method.

X-X dR6ELEMENT -T ELEMENT (7)

After o was formulated several checks using various orbit

types indicated the validity and accuracy of 0.

Incorporating the state vector coordinate transfor-

mation into this estimator meant that relative position and

velocity data, easily measured, could be directly trans-

formed to the orbital elements necessary for orbital deter-

mination. The estimator computer program and flowchart are

presented in Appendix D.

The estimator is checked using data generated by the

truth model. Various scenarios are simulated where range

and range rate measurements of a target satellite are made

from an interceptor satellite at selected time intervals. A

batch mode and a sequential mode are available where an

28
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estimation of the relative orbital elements is made based on

a single batch of measurements or several sequential batches

taken in time segments. The sequential mode uses Bayes

estimation theory. Flexibility in the truth model, its abi-

lity to generate data for any interceptor-target scenario,

leads to flexibility in the ways the estimator can be

tested, therefore revealing strong points or weaknesses in

the accuracy and versatility of the design. The Testing and

Results section of this report presents the statistics and

discusses the various scenarios and special tests performed

using the relative orbital element estimator program.
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IV. Testing and Results

The performance of the estimator in the test cases is

evaluated by comparing the statistics of the estimated ele-

ment vector to the statistics predicted by the estimator.

The covariance matrix (rQ-Ifl)-I for the batch least

squares and (p(_)-l +?jTQ-I 1,)-l for the Bayes or Sequential

estimation give the estimators prediction of how well it can

estimate the state vector or relative orbital elements. The

diagonal elements of the covariance matrix give the varian-

ces, a2, for each element. These variances are indicators

of the estimator's predicted performance. From the esti-

mated relative orbital elements resulting from a set of

simulations, where random noise corrupted the measurements,

a sample variance is computed using Equation (i), which is

the definition of a sample variance.

2 1 N 2ae N IJl (XJ - 2
e N-i J 1 ,e ESTIMATED e,TRUE

where

X is the relative element state vector

N is the number of simulations

e denotes the Delaunay Element

The variances computed using Equation (1) are the

results of the estimations made in the simulations for a

particular scenario. Similarity between these actual ele-

ment variances and the variances predicted by the estimator

from the covariance matrix indicate satisfactory performance
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of the estimator.

The measurement device accuracy over all ranges to the

target is given in Equations (2) and (3).

aRANGE = 1.57XI0-5 DU = 100 meters (2)

ORANGE RATE = 3.85X10- 5 DU/TU = 0.3 meters/second (3)

These values indicate the accuracy limits to which the

measurement device operates. From the residuals an indica-

tion of the accuracy to which the estimator updated the pre-

dicted measurement can be found and compared to the given

radar accuracies.

The root mean squared value (RMS) of the residuals are

computed in each simulation using Equation (4), the defini-

tion for RMS value for a sample group of measurements.

Measurement RMS - N E (rm - p) 2  (4)

where

rm is the measurement

rp is the estimator predicted measurement

N is the number of measurements taken.

The variances for the range and range rate residuals

are computed using Equation (5) using the measurement RMS

values from Equation 4.

1 NR N 0 2N1 (S (5)
T k=l i=l k

31

- --- * ~ A



where

NT NRNO

NR is the number of simulations

No is the number of observations per simulation

The square root of the variance gives the standard

deviation. The standard deviation of the residuals, com-

puted using Equation (5), are compared to the given standard

deviation of the radar accuracies. Agreement of the asso-

ciated standard deviations indicates the estimator has pre-

dicted the range and range rate measurements to the accuracy

of the measurement device.

Three test case scenarios are statistically evaluated

to check the performance of the estimator. Simulations of

each test case are made using random noise inputs to the

measurement data. The initial estimate used to start the

estimation process is the true relative element vector for

that particular test. The true vector is used because dif-

ficulties are experienced when a perturbed initial element

vector is used to start the estimator. These difficulties

in the requirement of a highly accurate initial estimate are

discussed shortly in this section. The test cases are now

described.

Case I uses the least squares batch mode of the

estimator. In this mode a number of range and range rate

measurements are taken and processed to give estimate of the

relative element vector. Case I uses 13 observations over a
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1 orbit period of the interceptor. Table 1 gives Case I

classical orbital elements and relative Delaunay elements.

TABLE 1

CASE I ORBITAL ELEMENTS

Interceptor Target

a 1.3 DU 1.35

e 0.2 0.3

i 450 460
450 460

w 450 460
10 00 00

00

6L 0.2171958 DU2/TU Al 0 RAD

AG -0.00876201 DU2/TU Ag .0174533 RAD

AH -.0199932 DU2/TU Ah .0174533 RAD

10 is the mean anomaly at the epoch time. The epoch

time is selected as the time at which the relative orbital

elements are to be estimated. Figure 9 shows the orbit con-

figuration at epoch time for Case I. Case II alsu uses the

least squares batch mode. The primary difference is that in

Case II at epoch time there is a 0.1 radian difference in

the mean anomaly. In Case I at epoch the two satellites are

co-linear on the P vector of the PQW coordinate frame while

in Case II there is an out of phase or non co-linear

situation at epoch as shown in Figure 10. Case II elements

are identical to Case I except the target 1o is 0.1 radian

so the Al at each epoch is 0.1 radian.
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L Tare

Interceptor

Fig 9. Case I, Satellites at Epoch.

Target

Interceptor

Fig 10. Case II, III, Satellites at Epoch.
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Case III uses the sequential mode of the estimator. In

this mode a least squares batch estimation based on an ini-

tial set of observations is made. This is an initial set of

13 observations. This is followed by sequential sets of

observations where two sets of three measurements over a 30

minute time segment are made. After the initial set and two

sequential sets of measurements are taken, the relative

orbital elements are estimated. Case III elements are iden-

tical to Case II.

Appendix B presents the measurement data for each test

case. This data is obtained from the truth model, in the

simulations random noise corrupts the measurements. An

explanation of the random noise inputs to the data is also

contained in Appendix B.

Statistics for Case I are based on 25 simulations, Case

II is based on 30, and Case III is calculated from 18 simu-

lations. In each simulation different sequences of random

noise inputs are used. As noted earlier in this section,

the estimator uses the true relative element vector in all

evaluated test cases as an initial estimate to start the

estimation process, therefore, the test cases presented

indicate the estimator error in estimating a solution for

the relative element state vector, when given the true state

vector. The statistics for the test cases are included in

Tables 2 through 7, shown on the following pages. Contained

in the first column of Tables 2, 3, and 4 are the variances
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computed from Equation (1) using the resultant vectors from

the associated case simulations. The second column contains

the average variances for each element from the covariance

matrix for that case. Similarly in the first column of

Tables 5, 6, and 7 is the standard deviation computed using

Equation (5) and the second column contains the given para-

meters for the radar.

The comparison of statistics indicates good agreement

between the actual and predicted statistics. The estimator

predicted statistics agree with the statistics of the resi-

duals and estimated element vector. This agreement tells us

that the estimator is functioning optimally for the given

scenarios and initial conditions. Comparing magnitudes of
2 2

the variances show that LL and CGG are smaller than the

other element variances. This indicates the estimator's

ability to determine the dimensional element L and G with

more confidence or accuracy than the angular elements 1, g,

h, H. In comparing Case II and III variances, where the

conditions at epoch are the same, but Case II uses the batch

mode while Case III incorporates more data using the sequen-

tial mode, the variances for Case III are notably smaller

than Case II. This decrease in the covariance from the

* batch to sequential case indicates the advantage of incor-

porating more data sequentially. A decrease in theii
covariance implies more confidence in the estimator's pre-
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TABLE 2

CASE I VARIANCE COMPARISON

Oii 2  ai 2

Element From Element Vector From Covariance
Equation (1) Matrix

L 2.4 E-12 3.0 E-12

1 2.6 E-9 9.8 E-10

G 1.35 E-11 7.0 E-12

g 2.11 E-8 3.9 E-8

H 3.55 E-8 1.4 E-8

h 1.6 E-8 6.2 E-8

Units L, G, H = DU 2 /TU 1, g, h = radians

TABLE 3

CASE II VARIANCE COMPARISON

From Element Vector
Element .ii2  (ii 2

Equation (1) From Covariance Matrix

4.02 E-12 1.7 E-11

1 2.17 E-9 7.6 E-10

G 2.09 E-10 3.5 E-12

g 2.46 E-8 2.9 E-8

H 2.02 E-8 2.0 E-8

h 4.22 E-8 5.0 E-8
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TABLE 4

CASE III VARIANCE COMPARISON

From Element Vector From Covariance Matrix
Element .ii2  Iii2

Equation (1)

L 1.19 E-12 3.2 E-13

1 1.09 E-10 1.5 E-10

G 4.5 E-12 2.3 E-12

g 1.44 E-8 4.05 E-9

H 9.58 E-9 1.6 E-9

h 2.69 E-9 7.7 E-9

TABLE 5

CASE I MEASUREMENT STANDARD DEVIATION COMPARISON

OR,RR OR,RR
Measurement Computed from Residuals Radar Parameters

Equation (5)

Range 1.96 E-5 DU 1.57 E-5

Range Rate 3.96 E-5 DU/TU 3.85 E-5
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TABLE 6

CASE II MEASUREMENT STANDARD DEVIATION COMPARISON

OR RR OR RR
Measurements Computed trom Residuals Radar Parameters

Equation (5)

Range 1.74 E-5 1.57 E-5

Range Rate 3.77 E-5 3.85 E-5

TABLE 7

CASE III MEASUREMENT STANDARD DEVIATION COMPARISON

OR,RR OR RR
Measurement Computed from Residuals Radar Parameters

Equation (5)

Range 1.55 E-5 1.57 E-5

Range Rate 3.53 E-5 3.85 E-5
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diction of the element set when the Bayes estimator process

is implemented.

Simulations using initial estimates other than the true

vector were also tested. These initial estimates were com-

puted using a perturbing factor that perturbed the true vec-

tor by a percentage determined by the magnitude of the per-

turbing factor. The sign of the perturbation, + or -, is

determined by a random process. These simulations were made

using noise free measurements and the initial estimate of

the relative element vector was perturbed. The percentage

of perturbation to the true element vector was limited to

values less than or equal to 1%. When values greater than

1% were used the estimator would not converge to a solution.

When noise corrupted measurements were used the limit of the

perturbing percentage decreased to approximately 1/10%.

This indicated that with noise corrupted measurements the

estimator is unable to converge to a solution unless a

highly accurate initial estimate of the element vector is

2 provided.

Several orbit scenario cases indicated weaknesses in

the estimator performance. If the target and interceptor

orbits are coplanar the residuals will always diverge and

convergence to a solution is impossible. The relative

inclination in this case is zero, therefore the relative

longitude of ascending node, h, is undefined. The equation

for satellite dynamics and reference frame transformations

contain h and in the coplanar case with h undefined a singu-
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larity exists. This singularity occurs for low relative

inclination, near zero, situations. For circular orbits

perigee is undefined and in near circular orbits the perigee

may be difficult to locate due to small changes in the

distance from the attracting body throughout the orbit

trajectory. Since the estimator uses a perigee dependent

reference coordinate system the circular orbit weakness was

recognized. Since the classical and Delaunay elements are

dependent upon the existence of a perigee the estimator has

difficulty estimating the angular elements 1 and g that need

a defined perigee for definition. Simulations revealed that

the estimator could not estimate 1 and g separately. This

was indicated by large variances for the angular elements;

however, the sum of 1 and g gave an accurate estimation of

target angular position at epoch time. Therefore, in near

circular cases determining angular position in the orbit is

possible but determining the angular elements 1 and g

separately results in erroneous values for those individual

elements. The estimator estimates Delaunay elements L and G

more accurately than the angular elements 1, g, h, and H as

indicated by the estimator predicted variances found in

Tables 2 through 7.
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V. Conclusions and Recommendations

Least squares estimation theory and techniques were

used in the design of the relative orbital element

estimator. The new and unique feature incorporated in this

estimator is the state vector coordinate transformation from

relative position and velocity coordinates to relative orbi-

tal elements. It is possible that the difficulties encoun-

tered in the orbit scenarios discussed in the results can

be solved using several modifications or changes to the

development and implementation of the design. Several solu-

tions or recommendations are now presented.

Using the conventional set of Delaunay elements lead to

some of the difficulties experienced with circular, near

circular, and coplanar orbits of the interceptor and target.

In a circular orbit perigee is undefined. With perigee

undefined, the argument of perigee, g, is therefore unde-

fined. Since the equations of motion and coordinate trans-

formation from the perifocal to inertial coordinate system

are dependent upon g as a variable these equations become

incalculable. In near circular orbits the element g is

difficult to define since the orbit is so near being

circular and the problems of singularities in the circular

orbit case arise. Coplanar orbits have the relative incli-

nation equal to zero. In this situation, longitude of

ascending node, h, is undefined. Again equations for motion
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and transformation will contain an undefined term and be

incalculable.

These problems can be solved using another set of orbi-

tal elements that can successfully handle low inclination,

circular or near circular orbits. The ideal set for this is

the Equinoctal orbital elements. These elements are used by

the NORAD Space Computational Center (Ref 2) and are free

from both zero inclination and eccentricity difficulties.

The Equinoctal elements are given in Equations (1) through

(6).

(1) af = e cos n where N=Q+w is the longitude

(2) ag = e sin % of perigee

(3) M = mean motion

(4) L = g + w + M = w + M = mean longitude when M is the

mean anomaly

sini sing
(5) X = I + cosi

sini cosa
(6) -1 + cosi

With circular orbit elements af and ag are zero, no elements

are undefined in this case. For zero inclination elements

X and * are zero and again no elements are undefined.

Reformulating the state transition/coordinate state trans-

formation using the equinoctal elements is recommended to

eliminate the coplanar and circular/near circular orbit

difficulties.
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The equation for position and velocity for the

satellite is initially computed using a perifocal coordinate

system. These calculations are dependent upon an orbit

where a perigee exists. Selection of a coordinate system

not dependent upon the existence of a perigee will eliminate

this problem. All computations in an inertial coordinate

system is one way of solving this problem.

The difficulties experienced when the initial estimate

of the relative element vector is perturbed from the true

relative element vector are of primary concern since these

difficulties would limit the scope with which the estimator

could be used operationally. A good assumption is that the

initial estimate used to start the operation of the estima-

tor will come from a ground-based tracking facility and not

be the true set of orbital elements due to limitations in

the tracking accuracy. Starting with the initial estimate

the interceptor, using range and range rate measurements,

can estimate a more accurate set of orbital elements for the

target. Presently a highly accurate initial estimate is

required to insure convergence upon a solution. This highly

accurate initial estimate may in fact be more accurate than

the set the estimator could provide. Therefore, the use of

the estimator would introduce more error to the orbit deter-

mination process. Reformulating or modifying the state

transition/coordinate transformation matrix using the

Equinoctal elements may increase estimator versatility.

Adding relative angular measurements to .supplement the range
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and range rate measurements may also enhance the estimator's

ability to successfully converge to a solution starting with

a less accurate initial estimate of the element vector.

Incorporating more types of observational data, such as

angular measurements, would give more information to the

estimator to process. Angular measurement may also increase

the accuracy of the estimator's prediction of angular

elements, thereby decreasing the variances of the angular

elements to values comparable to the dimensional elements.

Modifying relative position and velocity estimators,

such as the NASA Apollo Rendezvous Filter, with the state

vector coordinate transformation technique developed in this

design can create a new orbit determination method to be

used by satellite tracking facilities from a space-based

platform, such as the Space Shuttle or an orbiting station.

The modified estimator could be designed and tested simi-

larly to the method used in this study. The truth model

would have to be modified to give relative angular measure-

ments and a coordinate transformation from inertial to

vehicle reference frame would be required.

Due to the requirement of a highly accurate initial

estimate necessary to start the estimation process this

design is not yet considered by me to be operational.

However, with continued research and development of the

ideas and techniques used in this study along with implemen-

tation of my recommendations can bring us closer to develop-
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ment of an operational space based orbital estimation pro-

cess to supplement and enhance our ground based tracking

facilities in tracking and cataloging the many orbiting

vehicles in space, both friendly and others.
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Appendix A

Vector/Matrix Compon6nts of the Least Squares

Estimation Equation

1. State Transition/State Coordinate Transformation
Matrix, 0

The 0 used in this design is not a classical o matrix.

0 relates the relative position and velocity state vector

and the relative orbital element state vector. o also pro-

pagates the state vector in time. 4 is formed by develop-

ing relaLionships between the satellite position and

velocity in the perifocal, PQW, coordinate frame and the

Delaunay orbital elements and then transforming the result

into the inertial, IJK, coordinate frame. Position and

velocity are denoted here as Xrv and the orbital elements

are denoted XELM and are defined in Equations (1) and (2).

Xrv = [rI, rj, rK, VI, Vj, VK] (1)

-XELM = [L, 1, G, g, H, h] (2)

Equation (3) gives the PQW position and velocity rela-

tion to the elements.

d(X d(Xr,v)PQW dE + 3(_ _(3)

d(XELM) 6x6 dE d(XELM) 3(XELM)

Transforming Equation (3) into the IJK frame is accomplished

by Equation (4).
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d(X IJ 1  F R]rvPwr, v (X _ +[ ,v 4Ld(X ELM) a L ELM] .r, v PQW +I L ELM (4

where

R =Rotation matrix PQW to IJK frame.

0 is a 6x6 matrix given as Equation (5).

* = [d~x)IJK] (5)

The rotation matrix is a function of g, h, G, H. R is

given in Equation (6) where C denotes cos and S denotes sin

function. R transforms a position or velocity vector from

the PQW to IJK coordinate frame.

S(g) /l H2/G2 C(g) l- 2/72 H/

(Equation 6)

Equations (7), (8), (9), and (10) give the partial deriva-

tive of R with respect to the Delaunay elements.

-C(h)S(g)+S(h)C(g) (H/C) S(h)S(g)H/G-C(h)C(g) 0

FaRi

Lag9 -S(h )S(g)+C(h)C(g)(H/G) -S(h)C(g)-iC(h)S(g)(H/G) 0

C(g) !l-H 2/G2  -S(g) /1-H2/G2 0

(Equation 7)
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raR] C(h) C(g)-S(h)S(g) (H/G) ..-C(h)S(g)+S(h)C(g) (H/G) S(h) !l-H 2/G2

0 0 0

(Equation 8)

S(h)S(g)(H/G 2 ) S(h)C(g)H/G2  S(h)(H2/G3)//fl-H2/G2

raRiE--C(h )S(g)H/G2  -C(h)C(g)H/G2  -C(h)(H 2/G3)//l-H2/G2

S(g)(H 2 /G3 //-/G C(g)(H2/G3) -H/2/G

(Equation 9)

LH r C(h) S(g)/G C(h)C(g)/G h)HG//H22

-S(g)(Hi/G 2 )/!l-H2/G2  -C(g)(H/G2 )/Vr1-H 2/G2  I/G

(Equation 10)

The derivatives of the position and velocity in the PQW

frame with respect to the eccentric anomaly are given in

Equations (11) through (16).

drp/dE =(-L2 0) sin(E-E0 ) (11)

drQ/dE = (LG/p) cos(E-E0 ) (12)

drW/dE =0 (13)

dV p/dE =(14)

[L(l-rl-G2/L2 cos(E))] 2
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P.L2G[cos(E)sin(E)/..G2/L2 - (1-/1-G2/L2C0S(E))sjfl(E))]
dVQ/dE = .

[L2(1-v'1-G2/L,2COS(E))] 2
(15)

dv
T = 0 (16)

The partials of the position and velocity in the PQW frame

with respect to the Delaunay Elements are given in

Equations (17) through (29).

__ Lcos (E) - L /T-; 22 )(G/' 1(273

aLw

a WL (19)

avP -jsnE)[l-/fl-G
2 /L2 coS(E) -(G2/L 2 )cos(E)/v'1-G2/L2 ]

-L [L(l-/1-G2/L2 cos(E))1 2  (20)

'V0 = .GcosE)2L(lvlG2/L2 cos(E))-(G2/L)COS(E)/(.h1-G2/L2I

aI L2(l1,I1-G2/L cos(E))12 (21)

3Lw (22)

a- =G/ (~!~G2/L) (23)

-G0  L sin(E) (24)

aG = 0(25)

3G~ - [pGsin(E)cos(E)/(L.'1-G 2 /L~) (26)

[L 1-r-G 2 /L2 COS(E)) 2
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V v o E jL j- - 2 L cos(E))-Cos(E)G / V1- G2/72 1

3G 1tL2(1-/1-G 2/L2cos(E) )]2

(27)

- 0 (28)

ax
PQW

-0 (29)
a
1,g ,h ,H

The derivative of E with respect to L is given in

Equation (30).

dE- =/Pl~- L G/L)i(E][l3 - 2/Lco s(E)j (30)

dL

The derivative of E with respect to 1 is given in

Equation (31).

dE2
- = 11(141-G /L cos(E))j (31)
dl

The derivative of E with respect to G is given in

Equation (32).

dE 2 2 222
- = E(1//-G /L )G sin(E)/L 1/ti- 1-G /L cos(E)] (32)
dG
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2. Observation Vector and Relation

Range and range rate are measured quantities, and each

time these measurements are taken the following vectors and

matrices are assembled. The observation vector Z, is given

in Equation (34).

Range to Target

[Range Rate ] (33)

is a function of the relative position and velocity,

as shown in Equation (34).

[ (Ar 2 + Arj 2 + ArK2) I

(AVIAr I + AVjArj + AV KArK)/RANGE (34)

If the relative position and velocity are defined in

vector XIJK then Z is given as Equation (35) where the

observation vector is a nonlinear function called the obser-

vation relation G.

Z = G(X,t) (35)

Relating the state vector XIJK to the observation vec-

tor Z is accomplished using Equation (36).

H = 3G(Xt) (36)

In detail H is given in Equation (37).
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BRANGE 3RANGE BRANGE

aAr I  j ..... aAV K

H (37)

3RANGE RATE aRANGE RATE
aAri . aVk

where the components of H are given in Equations (38)

through (40). Note that range is not a function of relative

velocity.

ar
aRANGE - I,J,K (38)
aArij K  RANGE

aRANGE RATE (RANGE)AVI,J,K (9AV.Ar)ArIJK/RANGE

aArIJ,K RANGE 2

Ar
3RANGE RATE I,J,K (40)
3AVI RANGE

,J,K

is given by Equation (41).

Y= H 0 (41)

so in detail W is represented by Eq (42).

dRANGE dRANGE dRANGE
-- d (42)

dRANGE RATE dRANGE RATE
DL d

3. Q Matrix

The Q matrix is a diagnol matrix of the a2 values for

the measurement device. 1 ORANGE = 100 meters and

1 ORANGE RATE = .3 meters/second were used for the estimator

radar. The size of the Q matrix is determined by the

number of measurements taken, it is a 2Nx2N matrix where N

is the number of measurements taken (Equation 43).
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2
-R, 1

2
RR, 1

(43)

2
OR,N

20RR ,N

4. Residual Vector

A residual is defined as the difference between the

measured value and the estimation of the measurement

Equation (44).

RANGE 1

RANGE RATE 1

rl [G(XlNtlN]

- RANGE N

RANGE RATE N

where

is the relative position and velocity vector.

5. Nonlinear Least Squares Equation

When the ccmponents thus far computed are substituted

into the nonlinear least squares equation, Equation (45),

the result is Equation (46), correction to the reference
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relative orbital elements.

1,N N 1,N 1,N N 1,N

6 L

61

6X6G (46)

6g

6H

6h _

The target orbital elements are found using

Equation (47).

XELEMENTS,TARGET 9ELEMENTS,INTERCEPTOR + 63 (47)
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Appendix B

Test Case Data

Test case data is generated using the truth model com-

puter program contained in Appendix C.

Test Case 1 Data

Classical Orbital Elements

Element Interceptor Target

a 1.3 DU 1.35 DU
e 0.2 0.3
i 450 460

450 460
450 460

00 00

Delaunay Orbital Elements
Target - Interceptor

A Element Value

AL 0.02171957876309 DU2/TU
Al 00 RAD
AG -0.008762011386843 DU2/TU
Ag 0.01745329252222 PAD
AH -0.01999321219953 DU2/TU
Ah 0.01745329252222 RAD

Tracking Target From Interceptor Over 1 Orbit at 10 Minute
Intervals, No Noise Corruption On Data

Range Range Rate Time
(DU) (DU/TU) (TU) (MIN)

0.17513109 0.09800249 0.74366638 10
0.21953387 0.02029584 1.4873328 20

0.211625212 -0.03500555 2.23099914 30
0.17893223 -0.04364209 2.97466552 40
0.16317941 0.01209514 3.71833189 50
0.20293606 0.09071542 4.46199827 60
0.28797655 0.13177235 5.20566465 70
0.39208177 0.14477618 5.94933103 80
0.49886571 0.13946822 6.69299741 90
0.59442894 0.11326908 7.43666379 100
0.65887875 0.05266586 8.18033017 110
0.65981660 -0.05861977 8.92399655 120
0.567448959 -0.18229518 9.66766293 130

* Conversions 6378145 m = 1 DU

7.0905376 m/s = 1 DU/TU
806.8136 = 1 TU
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Test Case 2 Data

Classical Orbital Elements

Element Interceptor Target

a 1.3 DU 1.35 DU
e 0.2 0.3
i 450 460

W 450 460
450 460

M o  0 0.1 RAD

Delaunay Orbital Elements
Target - Interceptor

h Element Value

AL 0.02171957876309 DU 2 /TU

Al 0.1 RAD
AG -0.008762011386843 DU 2/TU
Ag 0.01745329252222 RAD
AH -0.01999321219953 DU 2 /TU
Ah 0.01745329252222 RAD

Tracking Target From Interceptor Over 1 Orbit at 10 Minute
Intervals Between Data, No Noise On Data

Range Range Rate Time
(DU) (DU/TU) (TU) (MIN)

0.33780912 0.08567198 0.74366638 10

0.36540682 -0.00667171 1.48733276 20
0.337044592 -0.06346114 2.23099914 30

0.27953501 -0.08556216 2.97466552 40
0.21942767 -0.06804477 3.71833189 50

0.192346278 0.00356536 4.46199827 60
0.22684532 0.083173361 5.20566465 70
0.30400591 0.117095657 5.94933103 80
0.392584098 0.116469891 6.69299741 90
0.47041812 0.08780420 7.43666379 100
0.514020451 0.02200318 8.18033017 110
0.491439874 -0.08888904 8.92399655 120
0.384083659 -0.18700137 9.66766293 130

* Conversions 6378145 m = 1 DU

7.0905376 m/s = 1 DU/TU
806.8136 = 1 TU
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Test Case 3 Data

Classical Orbital Elements

Element Interceptor Target

a 1.3 DU 1.35 DU
e 0.2 0.3
i 450 460
W 450 460

450 460
Mo  0 0.1 RAD

Delaunay Orbital Elements
Target - Interceptor

A-Element Value

AL 0.02171957876309 DU2/TU
Al 0.1 RAD
AG -0.008762011386843 DU2/TU
Ag 0.01745329252222 RAD
AH -0.01999321219953 DU2/TU
Ah 0.01745329252222 RAD

Tracking Target From Interceptor Over 1 Orbit at 10 Minute
Intervals Between Data. Two Batches of Three Sequential
Measurements Follow Initial Set

Range Range Rate Time
(DU) (DU/TU) (TU) (MIN)

Batch 1

0.24317394 -0.173231099 10.4113293 140
0.1431328 -0.08826717 11.15499568 150
0.124736178 +0.041287686 11.89866206 160

Batch 2

0.18910942 0.11915443 12.64232844 170
0.29104299 0.15135906 13.38599482 180
0.41097969 0.16973908 14.1296612 190
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Noise Corruption

Noise corruption to the data is determined by random

number generator that determines the position along a square

noise function modelled with a lo value equivalent to a

Gaussian a value. The square function is superimposed over

the Gaussian distribution. The equivalent la value is found

by equating the expressions for a2 for the gaussian and

square probability functions and finding the square a in

terms of the Gaussian function a. This is shown below.

2 W 2  1

square f x W-Wsquare

2 0 2 2 2
aGaussian = f x e - dx

Gaussian

2 1 3 1 W 2W 3  W 2
aGaussian 3 x (-2W) I-W = _

So the square function a, called W, is equivalent to

/To Gaussian, Equation (2).

(2) W OSquare = /3OGaussian
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Appendix C

Truth Model Flowchart and Computer Program

Enter Classical Orbital
Elements and Mo,(1 0 )

For Interceptor and Target
Enter Time Unit

onvert to Delaunay
Elements *Kepler Algorithm

ERotation- Matrix E
for Both Satellites 1G = E-e sin (E)

Kepler Algorithm* to dl/dE 1-e cos(E

ompute 9o-sition and

Velocity of Interceptor
in PQW Frame. Use R to

Transform to Inertial Frame

No (1l-)<c

Kepler Algorithm

to Find ETARGET Yes

E E

ompute Position and Velocity
of Target in PQW Frame, Then

Rotate to Inertial Frame
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Range = (Ar 1
2 + Arj 2 + ArK 2)V2

Range Rate = (AVIArI + AVjArj + AVKArK)/Ralge

Lit Up NomOiOn

E,=ND N~

1T 1 +62~



TRUTH MODEL COMPUTER PROGRAM

UT A;J- "CD Ln L P

LS G ' i zN t'. " TN

!NTECt CYCLECN7 ILL

,OMN /U-l LPL S ,Z ,~- S, , C

00 SE T4-L ! ' 1 T CL K: t I

Rct ,4L:tIT

L - E t LZ

1 f rU r 'l Tt L S F I TTrC ,T6: A 1. 7 r
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CF3I P' X u C ~ I ,2 L~GT \(C :1 9 CLSI

,' ~~ ~ L C' 1,~ ~ l a

DINd T il (Rr ,A:C

z' CoA X T~ :-C YA L -,D, TLS

RI:- 'T~L U : C )S I , 14L-1L'

DRP T~ I)

Op ll 9 a I4f ' Y 'I t CT 0 L~ C

*,o f~TDTC I t: O

C0 '1 T __ E_ IN L F Z

S S1 . I, I

L ! 4 y -

4 1 T I I I l 1 0

N I S = g S., T IG- '4 S

% f6f



ORIN

4=H1
G=G
^ALL RCT3?(:ZO1)
*4S=1I4J-*
GS=GST
H=HT

'ALL KCT32(kOTT)

IT'. /LT," 3

,YCLi=(YCL :f
,.. cC.'iplJrF INTi-FC'O ~L1 c- A, V'-LCZ1TY

EI=L31
£0 OrWFTNlUE

TEST=AES(T -3T
IF (TEST *LT.,E- 3 ; T

so 10 1

POS(,V, )=C -)'( C).C

Vos EL ( 3 :2

CALL MULLI 21 it,:Z5, ID si C~'E ;T~~T ~-. : CT

L 1 /7 L7L
w -St C T E ThD '-- )C T
T~ F- 37~ T L' :-

3 '0C1,:~2 .) -)S C C

T ES=L C " -, L S

-:F (,1 LTLT. Co

41 CONTINUE

D 013 (I , .)= .7 1) C 64



4R4A1G , A .T E

7 1 TIF 3TcP 3N--1 N4J -Z CKD J c C TO0 EET .
L SIrLSI+NI ') L T
LST=LST+,47 )Z-Ll
IF (CYCLE .;T. LI .1T) GO 72L
GO T3 '

99 E'N1
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Appendix D

Relative Orbital Element Fstimator Flowchart
and Computer Program

START SEQUENCE
Input mode, 1 if Least Squares, 0 if Bayes

Input noise input, 1 if yes, 0 if no noise input
Inpuc number of initial measurements-NUMMEA
Input a,e,i,w for interceptor satellite
Input differences between interceptor and

target Delaunay elements
(i.e., DL=LTARGET - LINTERCEPTOR)

Input percent pertubation-PTB,
(i.e., .01 is 1% pertubation for initial

estimate of relative element state vector from
true element vector

Form Q-1 matrix

1
Random pertuBation to true relative

element state vector

6 = 6T ± PTB * 6

+ Determined by random process

' ' 'i __|Read Range, Range Rate, Time

- " _A Add noise iif applicable

"Compute interceptor position

and velocity at measurement time

Compute target elements
B ElementsTARGET ElementsINTERCEPTOR +
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-Co6mpute target position and
velocity at measurement time

Compute '(t measurement)

ompute estimated relative position
and velocity state vector at

measurement time

Ar = rT - r1
A V T 7,

oMpute Hm on (function of A, AV)

measurement tm

Compute Wtmeasurement = Ht~bt

-C-ompute Range, Range Rate based

on Ar, AV for
measurement time

r Compute residuals
Range measured - Range computed

rt !
Range Rate measured - Range Rate
computed

Have
NUMMEA measure-

GO TO A NO ments been
taken or

processed?

I YES
Compute rms range and range rate errors
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Compute 66 (changes to the relative element
state vector) using least squares estimation

Store ( TQ-I1K) as P 1 (-) for subsequent Bayes filter

Update relative element
state vector

+ +

Recompute target elements
based on 6+

ElementsT = Elements, + 6i

Recompute target position and

velocity, based on updated ele-
ments for each measurement time

Recompute Ar, AV, range, range
rate for each measurement time

based on updated elements

Compute residuals
based on updated elements

Compute rms error values

Convergence Check

Range residuals < 3range

Range rate residuals I 30range rate

Monitor A6i < Vii
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convergence
GO TO B NO Criteria

Met?

YES

Estimation o elative lement
- sta.e vector is E

Store 3 as Z(-) for Bayes filter

Sequential
END NO Filter

(Bayes)
?

I YES

Input numberof measurements
per batch in sequential mode

CRead Rane g ae Time
Add noise tonmasuremntf applicable

ompute interceptor position and
Svelocity at measurement time

Compute tar' et elements

,:ELEM T = ELEM I +

Compute targei position and

velocity at measurement time

Compute ot

ompute Ar, AV at
measurement time
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Compute, tm and Htbt

ompute Range, Range Rate based
upon hr, AV for measurement time

Stret Iin total

Compute residuals

Has this

GO TO C NO batch of measure-
ments been read
or processed?

YES

ICompute rms Range, Range Rate error

Compute A6 (changes to the relative element
state vector) using Bayes estimation

P(+) = (P(-)-l +y TQ-IA0)-1

A6 P(+) (p(_)l(6() _ Vest)) +tTQl1r)

" Update relative element

state vector +  -+ A"

Recompute target elements, positions
and velocities at measurement times

using updat ed elements
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iT

Recompute Ar, AV., range, range rate
and residuals for each measurement
time based upon updated elements

-Compute rms errors for range, range rate

Convergence
GO TO D NO Criteria (same

as least squares)
met

YES

Estiination of relative
element state vector is

More

END NO Sequential
~Batches

YES

Store 6 as

Store P(+)-i as p(_)-i

GO TO C
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DEFINITIONS OF VARIABLES USED
IN MAIN PROGRAM

Real Variables

AX Semi major axis of interceptor (DU)

ARGP Argument of perigee of interceptor
(deg, RAD)

CK Difference between the computed and
actual mean anomaly in the Kepler
Algorithm

Cl-C6 Diagnol elements of the Covariance matrix

DXPDE Drp/DE, derivative of the position vector
component along the perigee direction
with respect to eccentric anomaly

DXQDE DrQ/DE

DXWDE Drw/DE

DVPDE DVp/DE

DVQDE DVQ/DE

DVWDE DVW/DE

DEDL DE/DL, Derivative of the eccentric
anomaly with respect to the Delaunay
element L

DEDLS DE/D1

DEDG DE/DG

DLSCDE Dl/DE, used in Kepler algorithm

DL Ltarget - Linterceptor

DLS itarget - linterceptor

DG, DGS, DH, DHS See above

E, ECEN, ECENT Eccentric anomaly

ECC Eccentricity interceptor

ECCTGT Eccentricity target
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G Delaunay element G target

GI Delaunay element G interceptor

GS Delaunay elemeng g target

GSI Delaunay element g interceptor

H, HI, HS, HSI See above

INCL Inclination of interceptor orbit

L Element L for target

LI Element L for interceptor

LS, LST Element 1 target

LSI Element 1 interceptor

LSC 1 computed in Kepler algorithm

LNOD Longitude of ascending node of
interceptor

MEANMO Mean motion of orbit

MU Gravitational constant, 1 DU3/TU2

NOSR Noise for range

NOSRR Noise for range rate

PTB Pertubation input for elements

PI 3.141592654

RANGE Range

RRATE Range rate

RANGEG Range computed by estimator

RRATEG Range rate computed by estimator

RKM Range converted to KM

RRKM Range rate converted to KM/sec

SIGR Gaussian a for range measurement

SIGRR Gaussian a for range rate measurement
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TIME Time in TU

TIMEM Time in minutes

VPPL aVp/3L

VQPL aVQ/3L

VWPL 3Vw/3L

VPPG aVp/aG

VQPG aVQ /aG

XPPL 3rp/aL

XQPL arQ /3L

XWPL arw/DL

XPPG arp/aG

XQPG arQ/aG

Integer Variables

Bi Number of measurements x 2

B2 R1-i

Clo Counter

COUNT Counter

4 CYCLE Counter

IER Error parameter for MATRIX inversion
subroutine

J Counter

K Counter

ID, IDI Measurement of identifiers

MODE Mode of program, 1 if batch,
0 if sequential

NUMMEA Number of measurements to be taken
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NOSE Noise parameter, 1 if noise corruption
to data

N Counter

NN Counter

SEED Start parameter for random number
generator

STORE Counter

RR Counter

XX Counter

Arrays (Vectors and Matrices)

PRPG [DR/BG]6x6

PRPGS [aR/g]6 x 6

PRPH [aR/BH] 6 x 6

PRPHS [ 3R/ah]6 x 6

XPQW Position and velocity vector in PQW
frame, X6 x1

R Rotation matrix PQW + IJK, [R] 6x6

DXDL (dX/dL]6 xl

DXDLS [dX/dl] 6xl

DXDG [dX/dG)6xl

XIDL [dXINERTIAL/dL]6xl YINERTIAL is !R
rotated to IJK frame

XIDLS [dXI/dl] 6 xl

XIDG [dXI/dG]6 xl

I' DGS [dXI/dg]6xl

(I! 'A [dXI/dH]6 xl

,dXl/dh 6xl
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TRANS o matrix, composed of column vectors
dXi/dL,l,G,g,H,h. This is the state

transition/coordinate transformation
matrix 0

DEL Vector of the differences between the
target and interceptor elements
[AL, Al, AG, Ag, AH, Ah] 6xl

STATE Vector of relative position and velocity

[Ari, Arj, ArK, AVI, AVj, AVK]6x1

HCURL Vmatrix for measurement [1]t2x6

DELDEL Update vector for relative element state
vector, computed by estimator

WKAREA, WK Work matrix for inversion subroutine

ROTT Rotation matrix PQW + IJK, 3x3

ROTI Rotation matrix

POS Position vector in PQW frame

VEL Velocity vector in PQW frame

HH Matrix of for all measurements
[W1'y'2' %3 -- " lN]2nx6

HHTP HH Transpose

QINV Q matrix inverse

HHTPQ IjhT Q used in least squares equation

HTPQH WT Q-g

Res Residual vector

HTPQHI

PHTP (%Q 1WI) - T

PHTPQ (%TQ- 1N) - TQ- 1

POSI Position vector in inertial frame

VELI Velocity vector in inertial frame

POST Position vector of target in PQW frame

76



VELT Velocity vector of target in PQW frame

POSTI Position vector of target in inertial
frame

VELTI Velocity vector of target in inertial
frame

HMAT H matrix for measurement time

RNG Vector of range measurements

RRT Vector of range rate measurements

POSS Storage matrix for position vectors

VELS Storage matrix for velocity vectors

TSTOR Vector of time of measurement vectors

PM Initial inverse covariance matrix
computed for Bayes filter, P-1 (-)

DELM Initial vector of differences cL elements
for Bayes filter, 6(-)

HCURLT N T

The following matrices/vectors are used in the Bayes filter of

the main program

Ml grQ- 1M1 TQ-I

PP P() +7TQ-I
SPPI (p(-) + yTQ-W)-l

M3 VTQ-Ir

DELDIF T(-) - TESTIMATED

M4 p¢_- (6(-) - 6EST)

TOT M 3 + M4

DELDEL PPI x TOT, DELDEL is the Bayes filter
computed updates to the relative element
state vector

CC Vector composed of the square roots of
the diagnol elements of the Bayes
computed covariance matrix
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RELATIVE ORBITAL ELEMENT ESTIMATOR PROGRAM

.DGA I S I
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-,~~~ll . .

L zSOP T ( X)

CALL r<CT-7(;1)TI?
GSI5SS
-is!=-IS
LIzL

PPINT * NU T RU 1S0"L F ; A ZS ST ;t,14

ORINT I -4 *.-C; fln L

E D 1 suG 'S9 4 W

,i, TRU :H C )EL , Szto
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nF~I;T 10=~ IF i L.37 U' fr.

~40SR=(rANFC)-. - 2 1 I. t

CA '_L AO ,0 6 '4OF -! N i11";
ENDI F

:'~ ,A NG rZ, ~ ~. I ', P0.AT 7 1 j~ T ,r 1
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~ENO: FCT~,~
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IF 80 Li
SOT



CALL. -LL;1( ,u L

S- *S AT(G,1+It ) =V :))/, i

* * ( U. 1 )~ '. (1, AI1)'

81 ZA G= (SI TS 2

0 0 zI

82 X X 9-1E

H1 ( YX, +1 'd U ( (.E)-2.1' -

~0 TT

DOG -'0

9 F (~i'
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o9I - p 43
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9 AL0
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30 c,:=~I
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CGALL fCi~~ -1)

00 7!.z.
X=XY+2 -

* ~ Rr-^C'UTE T I rGz FC (FT r .tC VELOC IT1 Y C# ~ ,L L ;O
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IF (:K .LT. 1i-: rj To

95 Z' P1 1N U
E = --C :hl
CALL P~ (,,r-; ~ 'T
CALL 'T7,13
CALL ?ML1C(GT,VLT,4L.3)

*~i FlYU ~ ELI'E PSl7'LL4 t' 40J I7LOCCUiY ST.I. dE:rcrP *

ST47t2 (J+1, 1 ) =v, .' (J !.
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7) 7
IF (ID .-fl. 1) GG TO
IF (%l Uli. I U

m
lEA) Go TO

GO 'C ?2o
380 CONTINUE

00 362 1=1102,2

382 C OfiIN LE
;tMS;, SrVT( /,NJ 'ME 0
tMSP;= C;T C ' IJ1 IE
PRINT ,4 ailS I A A'PG- RsTE I_31U L -Kfi S 3:)R FI'.T7RI
PRIN4T 1, lzS K;,1~

CYCLE =CYCL + iJe
PPI!T -,' CYCLZ sYr

#* EAYEC clwTIc' I - CUT

CALL TFPCS(HH,HH1%B..P,.I ,L)
CALL
'ALL P-U ,ClTL , ILI~h, ~~
:ALL In

FFU: , J) +7 =U P- ITHr )
391 CONT : N E
391 Cor. 1Nu

CALL lLT , Ip ( L 0; . , R:~ ~ - ,I .

CALL 'L'LTA(
4  

-HE,li ± '

100

CALL BLL7 IE~F'

)o' 1: , i=:, M*I)

3 F: CtCE3- TL (7, 1)-C':7U"C.iUTLV ~ Fr

DEL:-,'L ~ ) '1 L C4
42^j OW INL~

.C(:) (' : (2 2))P~

C()5czT (p EE

0C

IF (OELULI,, L.CV)~~

4311 COrTltUE
Ok&-NT - I C)U, ,U, FC* OILTA C4CiCKI

L=LI*OLL(l,t)
G=GI .OEL (ZI)

4 =HI *,0 E-L (r , I
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CALL RCT33(RC'T)

XXX .Z
:L0T1-371OF(4I)+'JC2,

ECE~iT=LST 
113

434 LSC=ECE1NT-DC .GT, -Ili Hretj) "i

IOLSCC)E~i.--:'CTGT' C0CE-IT)

CK=LST-L!;C
CKt -S UCK)
IF (CK *LT. 1E-1 I GI. Tl !,?r
Go TC IZ

435 30,4rrNUF

CALL POS'JFL(L,G,--:,Tcr ,-~ ,'
CALL MULTi ( CTT ,FCST , S-!, 7)

,ALL MULTI( ,-TT,VELT,.j TL - , )

00 1 6 J=i,!3

436 ^, 04 1 UT

RANTlG= ST CST 4Ti-s '2, *..1U +STtT 1 ,: )

437 A tJ'7'fUt

R mSP:

R=F --S E ,)' I I 4.R 4,

43 '4 NJTUNE

<'IS -A%Sl n ~ 5 'T -1.3..UAL zF, 'C. Arr: FILT:-R
-45 ~ ~ ~ M R ,I '~z

CONV:R jcE C 1TCl<

44' O'lt :NU

C0 T=922,,

IO * -. rJ LT G .

I F (CN ES C G L TI~ 7: Tw
Cl- =C NT

IF (CYCLE .71. E) -H:
P INT P' F;LG;!" '' :t' jcU.rt.7:AL ' oo:
GO Tc SS
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531'OXZ-1l

CALL MPFIT(PFI,f ,%.)
IF (ID .EO. g9) ':0 Tn ))
CALL
00 !1. 1=1,5

C YCL

.0 Tl 3(

0; NT , Z, :LR C AT~ r :UN C LiTE
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Appendix E

Subroutines Used in Computer Programs

'(PA t 2 L X F )(

X POW (,3 2 :I-

'(POW(Zj
~(I.

ROTATE Cot'PjT% A LX' 157U Al X FOP, Tr Plk'ITt~ VELOCITY

VECTOR FR04i THI- POW rn TA J F

SUS;oUllN~l ROTAT() 
IK

INTC , I C, J

R C",q . ) =CO ( -4 , C',3 -', I)- ( I
DO (I. , )i(C7 ' 171 S)'~:( S O ( S

:,(I ) p r

POAI. f-~rI 2 [~ ,TZ ?)S4,

U) 86 1



D!PG

PROG ( 11) = -T!' qS) flq' "/r 2

PRPG('.,223=!I~(~' (Ps)I 33 , /r"

0OPG 2 1 ,' 0 (H5) 11 ( 131 ' H/G" 2

PFPG(2,2=0 P)C)!(1 z1HG2

ORr 3 , 3) -t/G' 2

03 I=i,3

00 ,J=, C-

±3 Co?)T1NUE
00 2 1 ,,r

CG ( I ,J)

2~1 CGNTINL' -

pr:PG (L ,=. 3 Pr (1, 2)

Pf-,G (4 b ="C, G (7 2)

PRPH 2(-F PS

P RPH4 3,') (-S = (-Z 14 IS )U 2

P~O.J~,~)OA/G~

00 .~.( ')~ I ~,
00 2J1, JzI:H(IJ

21 0 , -- u87



P P - -4

00 4 J=4,
OF Hi , J)

W,~ CUNTI NVE
45 -,0N4TNUE

11 U = :0'

55 Q , C01 NU

IZ ' -'7 3 PS

k FH Z L 3 ::7 W~S, ?

Pi* F ', P -z P -. F a B .

Pp i.* H; , ~ (3

j2F=3 H ( C(S)I',-H/,-C0S( OH 'cCJS( S)

0Rp( -, ( Z c C 2 : ( 31 3

PF PG-' S c- I' - 2-Z

Dot Jx- ,.

Q:,-PG S ( I, 11

65 0*1 (1,

75 N%I I N

Po 'PC, (~ , . =p; Cs (L

i r, G 3~ k GS~t

X~0 C'if'J Lt) S Tw F I w P rS T 0 A'NJ 'I--L I1t Y VF Tz
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AD-All 107 AIR FORCE INST OF TECH WRIS44T-PATTEftSON AFS ON4 SCMOCTC F/f 29/3
DIONf OF AN ORSITAL ELEMENT ESTIMATOR USINO RELATIVE NOTION OA--ETC(U)
DEC 51 J F ANTHONY

UNCLASSIFIED AIT/GA/AA/510-1 ML



W 1114 R E 0 ' 0 4 ~C VI-Of L Y

C 0'!!1 /L ZA/ LL z 1 4 '4S- 7 C -
0(PCE=- (L / U)SI J
r) X00 EL -G4 C3S /I U)/

C (L~' .- 3.F1^' 'S(

ZNO

XI)L O'FUT = TH~E )IlrV7 ZoF I HE POSITION AND 'E~~VEvtro
WIT RS~CTTO :-~ )7 _A&i~Y ELimENT L

XW::LVP L,VFL ,V W.,', IL, LS

REACL (3, lt~i-)

SOMCN /FLZ2'/ L,L3,3,,44SECV

-G ', -- r ,= - -0 -)

XPL=,LCC()/J-,L=: .w-LL/^ /IUG89L0



V(l3G= (L'L&-(I. -:C: /

OX:tC 21) CTD;.'(~l

rin CC#PL'7ES THE 2'?J% tV/ CF 7HZ JE=RTIV. 035-TI34 %43 VE.OCITY

END

ZOILS CLP:PVT73 -'E J) l E OF TH. IJ T 5JTIO4 1'43 VE.O:ITY
VEC13F KTH' P-ESrET r) TAF CELLUtAY ~L'ZTLS

REAL F (i*C 1! ),LI)'L?- fl-q'') XlL I6 l
CALL MULTI (&0,CX0 t X, 'IL;,

I~' O'~T~ H~ ~ ''~"EOF THE TlLRTI',. 'Cr'TD'4 ~'43 E.(T
VCIDR W"i ;_2E'T f) r- ELt.UMAY ELEHEtr G

SUN' ZU-INE IGF,~WY~x~
11NT-7EK I.

CAL

CALL rL'LTT ~lXC;, Xl)7"k
:)
XIJG(I,1)=YlOGQ(,11 *4'Tr?(b)

0~ 0.14T 1N LI
S 1J

I~rS CCMPUTES TH; lf'44 -711E OF -H: I.A=R7IV. P3TI)'d 44L VEOCI!Y
VECTOF WITH FcSEiT r') -4 GFLAUNY _LE'EN; GS

SUBPOUTINE IDGS(FD-, x'1,XI!)SS)

CALL MULTI(RG,1,VSt
_N0'

IDH CCVPU1E-S Twi )r; 'JA'lE OF THE IJ:TI; FOTON3 %N VE..OCITY
V-TC70P WITLH 9R:SPE~ T T-c DEL4U144Y ELEAE.:Nr H
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CL U 1(c: Z4,fY4. v t',

IDH,'. COMPVIES TWE 3r' :fV-VE OF THE 1.~'4ETIA. FI'TIJI AND VELOCITY
/EC'2 WIT-4 'M T-4-- rrLAUNAY ~L41T4S

SU2P)UT1tKF ltfI(FRH' ,NCO1W,XIDH ,)
REAL Pi'PHS(11, ,i2,) (~(tE., ill) ,YIOLISC1II. Jli)
rCALL PUT(mH9-1,TqzE
SN 0

IN~tT POTATES PC6iP'144 "', VEL.CCITY VECTO F~ P04 r) IJC FR4ME

SUWUT INE I ';E'T ( R9 '31'49 YIN)

CALL mULTI (k(,xPcw, 1Tq ,

FILL FCFR-!S TH-' ST TS ''1F" T1Of./CCC ^1N.TE 'R43oFrAriaN M.ArUIX
tJ3INJ THE 4 r~cipv.-rii V"TOPS CF T,-fL 7,''JKTfL 21STrrN AND
VELUCO'y 4IT'4 'r) TH._ _,FLAUN4AY. LMT

10 CONT11,Uc

20 C ONT1INU

0O

&.1 CONT NU E

DOV. CO' U: I= fIT' :~ LOIYVCZ i * 0 ,M

V fNS I X :P
50 Ol T.1) U 4II~(S.) EC3T

oo , ' =1

REL LS 'q 3 'f - q -_.> r,_L



-E 2,-''GSU - ' 1 .- : S - T )

FcS I fl TO I -: KC

SUJrF2'JTINE ROT317MrI

/--LCI --:/ L,L, 3 9 1? "St ,Fcc,1U
RCT i 2)=C :3 US .4~rs ~',H ~I (GS) *H/;

007(2:tIIS( 34S~4~ )+ISH S 13 /

I4NT ( 2, )=-'MV l (HS,3 '' )+ G 1 :S(S 11

S,? :UT PJ H4S i 1

41,~~ A- 2 = l



C AL L c
CALL PVD'w c W)
CALL XC(C('3 Cy Z, ')("1" rCVP%,L LV2, VWM)
CALL Y IL ( E P Ci'') 7. ly')tCVP -VlzVWDT,010L)
C ALL XLLSUI( t ,V41.wplvS
CALL XDG( CY 0-gIN'D., 1%11,rlr lo)-9~) y
CALL ICL(F -0Y:,L,XiL'
CALL IOLS1 ,CYU~Lv XI11 3)
CALL 1tG(F')0G, XFC4,, -l*, YIDG);
CALL
CALL J0( PX~,X N
CALL ILHS(O0F'ISqY2C.4. vUHj'
CALL FILYCl'3 ~l,-IGI'JX0S ~Y

7-10

3L9: :IN 4C, 1-1 To "!AUl'lENTS
REAL NOSK, 14STP% ' 1

READ

J=x
00 2 . ~I I
DC I - =1

Pt 00 (I, ) P o"(, J) rl ) 3(1.I, J)
10 0OJTINUE
20 rOt4T!NUEz

7140

MAT, IX-v.T~rx MoLlID-'rrrN SUPCUTZNE

DO 3' J=I,OH
00 2' 1=1,4

OrCD! (I, )=
3O i. K=il,4

10 CONITINUE
2;1 C OtIINUE

END

SU ;CUTIJE K='PL-- USr- 74T W~EPLK~ 4..GJIT~i4 TO 1"14 Tjr
ECCr iIC INO ALY' r .' 'r"711 GIVEN A Pk-:TI'JU T14-: DkST

~E E GF T H'. OF I .
S U:3- UINE < FcL T1 7' f ,EC ENT

E C.V T I'

1=-LE -E : ,S f, " Ir

jjv= .! F 71-
r .7 C"........................---



AIC7

T E S l T 51

I F S~? -LT. Z~ '
GO T,, 1

EN

4 P.1.1 F; I jT S t ~1 2: C~ T' U~

RtEAL 40?'M(,i)
00 V 1=19"R,

10 00IN E,

TRPCS cct-F'jrEE TV:- '" '131E OF A MAT jX

SUe--,UTI!E T' POSC'44 T . IIT- ,'OW,CCL,' 4-X,CrMAX)

1 0 COItU

O J=I. , O3
DC 2 Il)=1.;f ,J

la cw. K,UE

Do Z J=1,1H

:)0 K =CI,

PvOClI, J)=rCKC I) .C TJ

2c0 NVT i N u 7

E~J

Of ! K=,,,
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